作者单位
摘要
1 国防科技大学 理学院 长沙 410073
2 国防科技大学 前沿交叉学科学院 长沙 410073
3 国民核生化灾害防护国家重点实验室 北京 102205
开展基于塑料闪烁光纤的宇宙线缪子测量研究时,对闪烁光纤输出光脉冲的光子数定量分析,是读出电子学设计的前提。在无单光子源等弱光标定时,对缪子入射事件在光纤中产生光脉冲的光子数进行定量分析是本文的主要目标。首先利用硅光电倍增管(Silicon Photomultiplier Tube,SiPM)固有的非光生载流子特性标定光脉冲的测量值,获得缪子在直径1 mm和2 mm光纤中产生微弱光脉冲包含的光子数;然后结合Geant4软件模拟计算缪子在光纤中理论光子产额,并与实验结果对比验证。结果显示,在直径1 mm和2 mm光纤中光脉冲光子期望值分别为44个和85个,与模拟结果偏差分别为4.55%和10.59%,表明该低光子数测量方法可以在无额外标定设备时,实现对缪子入射光纤产生光子数的准确测量,并可以应用在其他弱光脉冲光子数测量场景中。
硅光电倍增管 缪子 塑料闪烁光纤 光子数测量 Geant4 Silicon photomultiplier tube Muon Plastic scintillation fiber Photon number measurement Geant4 
核技术
2023, 46(10): 100401
作者单位
摘要
深圳大学医学部生物医学工程学院,广东 深圳 518000
太赫兹无损检测是一种非侵入、非接触性的新型检测技术,在无损检测领域极具潜力。但在实际探测中,对于复杂的太赫兹回波信号,如色散回波和重叠回波,仅利用传统的信号处理方法(如直接法、反卷积法)难以满足对飞行时间定位精度的要求。稀疏表示法作为一种太赫兹信号处理的新方法,具有良好的定位精度和抗噪性。提出基于最小绝对收缩和选择算子(LASSO)的稀疏表示法,从复杂的太赫兹回波信号中重建脉冲响应函数,并构建双过完备字典完成对太赫兹反射信号的色散补偿。针对重建脉冲响应函数幅值不准确的问题,提出幅值衰减系数,修正脉冲响应函数幅值,有效提升时域峰-峰值的成像质量。通过数值计算和实验分析,验证了所提方法的有效性。可以预期,基于LASSO的稀疏表示法能够为太赫兹无损检测中的信号处理提供新的解决思路。
太赫兹无损检测 稀疏表示 脉冲响应函数 时间脉冲扩展 
激光与光电子学进展
2023, 60(18): 1811014
作者单位
摘要
深圳大学医学部生物医学工程学院, 广东 深圳 518000
太赫兹波具有载频高、带宽大、频谱信息丰富等特点, 其在高速通信、分子检测和生物医学成像等领域的潜力已得到广泛关注。太赫兹调制器是太赫兹检测系统中的关键器件, 但是当前已报道的调制器都不能同时具备高效、高速、低插入损耗等特点。因此, 提出并设计了一种基于 GaAs 肖特基二极管结合表面等离子体栅阵结构的电控太赫兹调制器。该器件将谐振腔和金属栅阵的电场增强效应相互叠加, 大幅提升了器件的调制性能, 实现了 0.4~1.4 THz 范围内多频点调制, 最高调制深度约为 80%, 插入损耗低于 10 dB,调制速度大于 100 kHz。
光电子学 太赫兹调制器 金属栅阵结构 肖特基二极管 optoelectronics terahertz modulator metal grid structure Schottky diode 
量子电子学报
2023, 40(2): 275
Author Affiliations
Abstract
1 Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
2 Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen 518060, China
3 Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, China
4 e-mail: shutingfan@szu.edu.cn
5 e-mail: ywsun@szu.edu.cn
Terahertz (THz) topological photonic structures are promising for last-centimeter communication in intra/interchip communication systems because they support bit-error-free THz signal transmission with topological robustness. Active and dynamically tunable THz topological photonic components have not yet been experimentally realized. Here, we experimentally demonstrate a THz topological switch (270–290 GHz) based on a valley Hall photonic crystal structured high-resistivity silicon substrate, in which the THz waves can be dynamically turned on/off by an external 447 nm continuous-wave laser. Our device exhibited an on/off ratio of 19 dB under a pumping light intensity of 240 mW/mm2. The 3 dB switching bandwidth was 60 kHz.
Photonics Research
2022, 10(4): 04001090
作者单位
摘要
深圳大学医学部生物医学工程学院, 医学超声关键技术国家-地方联合工程实验室, 广东省生物医学信息检测与超声成像重点实验室, 广东 深圳 518060
从成纤维细胞、上皮细胞、神经细胞、干细胞、淋巴细胞及生殖细胞几种常见的细胞系入手,详细阐述了太赫兹辐射对不同细胞的功能、蛋白表达及基因毒性等的影响。围绕辐照条件和响应机制,基于现有的细胞学研究成果,提出了针对太赫兹生物学研究及具体应用的建议。随着太赫兹理论在生物医学领域的不断发展和成熟,太赫兹技术必将对开创新型诊疗技术具有重要的意义。
太赫兹技术 辐照 细胞学效应 非热效应 
中国激光
2019, 46(6): 0614013
Author Affiliations
Abstract
1 National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
2 Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK
3 Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
4 Department of Chemistry, University of Vermont, 82 University Place, Burlington, Vermont 05405, USA
5 Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, UK
6 Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, China
7 Key Laboratory of Ministry of Education for Optoelectronic Devices and Systems, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
8 Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
We employed a metallic wire grating loaded with graphene and operating in total internal reflection (TIR) geometry to realize deep and broadband THz modulation. The non-resonant field enhancement effect of the evanescent wave in TIR geometry and in the subwavelength wire grating was combined to demonstrate a 77% modulation depth (MD) in the frequency range of 0.2–1.4 THz. This MD, achieved electrically with a SiO2/Si gated graphene device, was 4.5 times higher than that of the device without a metal grating in transmission geometry. By optimizing the parameters of the metallic wire grating, the required sheet conductivity of graphene for deep modulation was lowered to 0.87 mS. This work has potential applications in THz communication and real-time THz imaging.
Photonics Research
2018, 6(12): 12001151
Author Affiliations
Abstract
1 National-Regional Key Technology Engineering Laboratory for Medical Ultrasound Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging Department of Biomedical Engineering School of Medicine, Shenzhen University Shenzhen 518060, P. R. China
2 Department of Physics, Capital Normal University Beijing 100037, P. R. China
T-rays is sensitive to covalently cross-linked proteins and can be used to probe unique dynamic properties of water surrounding a protein. In this paper, we demonstrate the unique absorption properties of the dynamic hydration shells determined by hemagglutinin (HA) protein in terahertz frequency. We study the changes arising from different concentrations in detail and show that nonlinear absorption coefficient is induced by the dynamic hydration water. The binary and ternary component model were used to interpret the nonlinearity absorption behaviors and predict the thickness of the hydration shells around the HA protein in aqueous phase.
T-rays absorption coefficient hemagglutinin hydration shell 
Journal of Innovative Optical Health Sciences
2013, 6(4): 1350047
Author Affiliations
Abstract
1 Joint Research Centre for Biomedical Engineering Department of Electronic Engineering The Chinese University of Hong Kong
2 Institute of Biomedical and Health Engineering Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, China
3 Key Laboratory for Biomedical Informatics and Health Engineering Chinese Academy of Science, China
Terahertz technology is continually evolving and much progress has been made in recent years. Many new applications are being discovered and new ways to implement terahertz imaging investigated. In this review, we limit our discussion to biomedical applications of terahertz imaging such as cancer detection, genetic sensing and molecular spectroscopy. Our discussion of the development of new terahertz techniques is also focused on those that may accelerate the progress of terahertz imaging and spectroscopy in biomedicine.
Journal of Innovative Optical Health Sciences
2008, 1(1): 29–44

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!